03.10.2022 13:00

Предиктивная аналитика

News image

Здравствуйте!

Предиктивная аналитика (от английского “predictive analytics”) - это предсказательная или прогнозная аналитика.

Предиктивная аналитикаЕсли разбираться глубже, то это совокупность методов анализа данных с их интерпретацией, которая помогает на основе прошлых событий принять с большой точностью верное решение в будущем.

Происходит это за счет нахождения параметров среди данных, которые влияют на другие. Далее определяется степень влияния, и происходит магия: Вы получаете картину того, как изменится Ваш бизнес, если какой-то параметр изменит свое значение.

Зачем нужна бизнесу

Предикативная аналитика дает преимущество перед Вашими конкурентами. Представьте, что Вы всегда владеете прогнозной информацией, знаете, что будет с бизнесом завтра, и какое решение более оптимальное в этой ситуации.

Важно. Сразу хочу извиниться перед математиками: это статья будет написана крайне простым языком, и для лучшего понимания, термины могут быть заменены на человеческие понятия, а принципы описаны ненаучно.

А теперь ответьте себе на один вопрос, только честно: "На основе чего Вы приняли последнее решение в Вашем бизнесе?" Ответили?

Наверняка что-то из разряда: "у меня большой опыт", "раньше всегда так принимались решения", "мне посоветовал мой маркетолог, жена, брат, сват" и т.д. И вполне вероятно, что это решение было верное, но случайное.

Предиктивная аналитикаА теперь мы Вам расскажем, как бы Вы его принимали, опираясь на предиктивную аналитику. Только учтите, что это лишь малая часть способов её применения.

Предсказательная аналитика в разных сферах бизнеса

1. Оптимизация в ритейле и FMCG

В них это работает следующим образом: если Вы знаете, какие продукты пользуются спросом у покупателей, можно решить сразу несколько задач: каких товаров и сколько должно быть постоянно в Вашем магазине (интернет-магазине), что предложить покупателю вдобавок к его покупке, какую цену оптимально установить на определенный товар.

Пример:

Вы владелец интернет-магазина одежды. У Вас есть информация, что 80% клиентов мужского пола вместе с пиджаком покупают еще и рубашку.

Предиктивная аналитикаТак вот, зная это, Вы сможете предлагать всем мужчинам, которые заказали только пиджак, заказать еще и рубашку. Наверняка многие согласятся, т.к. статистика не врет. Тем самым Вы повысите средний чек заказа.

Анализ ассортимента и его прогноз

2. Оптимизация производства

Если Вы собираете информацию о параметрах, влияющих на работу оборудования, а не надеетесь только на инструкцию по эксплуатации, то намного проще предотвратить его поломки и провести необходимое обслуживание.

Пример:

Предиктивная аналитикаУ Вас своя конвейерная линия, и уже не раз случалось, что при повышенных температурах воздуха оборудование выходит из строя. Зная это и прогноз погоды на ближайшее время, Вы сможете предотвратить повышение температуры в цеху, тем самым избежите простоя.

Статистика работы оборудования

3. Обнаружение мошенничества

Если у Вас есть статистика по недобросовестным клиентам, например, по их полу, возрасту, профессии и другим признакам, то Вы сможете их отсеивать еще на стадии анкетирования.

Пример:

Предиктивная аналитикаВы занимаетесь банковскими услугами, и у Вас есть собранная информация о том, что клиенты от 18 до 21 года, а также судимые чаще всего не производят выплаты по кредитам. Зная это, Вы можете не сотрудничать с клиентами из этих сегментов.

Статистика мошенничества

4. Управление рисками

Если в Вашем бизнесе есть риск, то с помощью прогнозного анализа прошлых негативных событий можно влиять на их предотвращение в будущем или же лучше страховаться от них.

Пример:

Вы занимаетесь страхованием здоровья, и у Вас есть статистика, что у людей из промышленных профессий риск травм выше, чем у менеджеров.

Предиктивная аналитикаСоответственно, чтобы компенсировать риски от страхования людей с пром. предприятий, Вы запросите у них бОльшую страховую сумму и будете стараться диверсифицироваться путем страхования менеджеров.

Минимизация рисков

5. Маркетинговый и клиентский анализ

Если Вы собираете информацию о Ваших клиентах, их поведении, величине и частоте покупок, Вы сможете смоделировать будущее поведение клиентов.

Зачем это нужно? Как минимум, для понимания людей, а в идеале для улучшения клиентского сервиса на каждом этапе взаимодействия клиента с Вашим бизнесом.

Пример:

Вы владелец кинотеатра. Благодаря системам видеонаблюдения получили среднестатистический путь зрителя: он открывает дверь, отряхивает ноги, проходит к кассе, покупает билет, проходит в гардероб, посещает туалет и ждет открытия дверей в кинозал.

Уже только в этих местах Вы можете организовать дополнительные рекламные размещения.

Предиктивная аналитикаТакже можно сделать посещение кинотеатра удобнее: поставить самооткрывающиеся двери, положить дополнительный коврик при входе, организовать автоматическую систему покупки билетов, увеличить количество работников гардероба и т.д.

Путь клиента

6. Продажи

Благодаря аналитике в продажах, Вы сможете точно знать, какие показатели непосредственно влияют на выручку и прибыльность бизнеса, а какие косвенно.

Пример:

Предиктивная аналитикаВы сможете посмотреть на статистику прошлого года по конверсии из заявок в продажи и оценить, что влияло на неё положительно, а что отрицательно. После чего составите план действий на текущий год, чтобы достигнуть поставленных целей.

Анализ конверсии

7. Работа с персоналом

Ведение учета причин добровольных увольнений и фиксация их зависимости от срока работы поможет снизить текучку кадров, повысить лояльность Ваших сотрудников или хотя бы будете готовы к их уходу.

Пример:

Предиктивная аналитикаВы заметили, что персонал, который проработал в компании 2 года на одной должности, увольняется по причине того, что им становится неинтересно. С этой информацией Вы сможете периодически устраивать ротацию в коллективе или хотя бы заблаговременно подготовить замену этому сотруднику.

Причины увольнений

3 кита предиктивной аналитики

Предиктивная аналитикаАналитика в целом (и прогнозная в частности) подразумевает под собой работу с данными. Там где их нет - нечего анализировать, и нет почвы для выводов. Поэтому, когда Вы принимаете решение, не опираясь на информацию, Вы превращаетесь из предпринимателя в гадалку. Не надо так! А теперь к китам.

Основные компоненты

Кит 1. Сбор данных

Чтобы работать с информацией, её нужно собрать - все логично. Но какие собирать и как? На эти вопросы нет правильных ответов. Для каждого бизнеса необходимы данные и методы. Поэтому здесь работает правило: чем больше, тем лучше.

Но все же перечислим основные:Предиктивная аналитика

  1. Количественные показатели. Сколько клиентов привлекли, сколько сообщений написали, сколько продукта продали и т.д.;
  2. Экономические показатели. Сколько денег заработали и потратили, какая маржинальность, прибыльность и т.д.;
  3. Внешние факторы. Уровень конкуренции, стратегии конкурентов, экономическая и политическая ситуация и т.д.;
  4. Внутренние факторы. Загруженность персонала, уровень квалификации кадров, факторы влияющие на производство;
  5. Временные показатели. Какое время затрачивается на одну сделку, как часто они повторяются;
  6. Конверсионные показатели. Какой процент клиентов перешли из одного этапа воронки продаж в другой;
  7. Клиентский путь. Откуда к Вам пришел клиент, как о Вас узнал, какой путь преодолел, как себя вел и тд.;
  8. Клиентские показатели. Пол, возраст, профессия, семейное положение, уровень достатка, где живет, его потребности и т.д.

И далее, далее, далее... Продолжать можно бесконечно. В оффлайне это датчики движения и сбора информации, wi-fi мониторы, системы умного видеонаблюдения, кассовые аппараты и товароучетные системы.

Тем, кто в танке и все ведет в книгах учета, на листочках и тетрадях - не позавидуешь. В этом случае сбор данных ограничивается наблюдением, проведением опросов и подобными инструментами. И если Вы сейчас подумали "о, у меня так", то просыпайтесь скорей и вступайте в эру информационных технологий.Предиктивная аналитика

Кит 2. Исследовательский анализ

Здесь начинается работа с данными. На этом этапе нужно из их совокупности найти ранее неизвестные, непонятные сведения. А также и полезные практические интерпретации собранных знаний, которые необходимы для принятия обоснованных решений.

Это понятие называют "data mining" - обнаружение знаний в данных. Основу их исследовательского составляют различные методы классификации, моделирования, а также статистические методы. Об основных мы расскажем чуть ниже.

Скажем сразу, для проведения эффективного анализа необходима достаточно крупная база сведений. Так в этом случае работает закон больших чисел - чем больше, тем более объективными будут выводы.

Предиктивная аналитикаИсследовательский анализ информации решает задачи:

  1. Классификация. Присвоение одного элемента к группе других по определенным параметрам;
  2. Регрессия. Выявление зависимости результатов от исходных данных;
  3. Кластеризация. Объединение объектов в группы по различным параметрам;
  4. Ассоциация. Определение закономерностей между событиями;
  5. Последовательная ассоциация. Определение, через какое время после одного события случится другое;
  6. Анализ отклонений. Определение некоторого количества исключений из правил.

Кит 3. Предиктивное моделирование

То, ради чего и нужна система предсказательной аналитики - создание высокоточных прогнозов. После предыдущих этапов у Вас есть массив данных, нам нужны их интерпретации. То есть различные классы, кластеры, зависимости, ассоциации и отклонения от нормы.

Предиктивная аналитикаНа этом этапе Вам необходимо:

  1. Поставить задачу перед аналитикой. Прогноз того, что Вы хотите получить и на какой промежуток времени, или время до определенного события. Это может быть прогноз прибыли на год, спроса на рынке в августе, или сколько еще проработает Ваш станок;
  2. Выбрать математическую или статистическую модель. Она и сделает этот прогноз. Если проще, то принять во внимание множество факторов, которые влияют на заданный прогноз, распределить их удельный вес в конечном результате и ввести исходные сведения.

Основные типы и их методы

В основе предиктивной аналитики лежат статистические методы. Также важно понимать, что её система тесно связана с big data и искусственным интеллектом, поэтому основана на машинном обучении. Теперь к делу.

Предиктивная аналитикаТипов ПА всего существует не 2, но мы расскажем именно об этих, потому что они точно помогут Вам в бизнесе.

Основные типы и методы

Тип 1. Контролируемое обучение

Или обучение с учителем, подразумевает под собой построение (обучение) модели по исходным данным и выходящим результатам. То есть в построении модели известны и параметры события, и результат, на который они влияют.

Например, если мы знаем, что на выручку влияет число покупок и средний чек, а нам необходимо узнать, каким образом влияет тот или иной параметр на её размер, то мы прибегнем к контролируемому обучению. Оно включает два ключевых метода предиктивной аналитики:

1.1. Регрессия

Это самый популярный метод. Применяется для получения количественных ответов или числовой ценности. Например, для расчета выручки по конкретным параметрам.

При регрессии используется:Предиктивная аналитика

  • Числовая переменная ответа. То, что пытаются предсказать;
  • Предикторы. Параметры, которые влияют на ответ.

Взаимосвязь между параметрами и результатом и есть предиктивная модель. Кстати, помимо взаимозависимости рассчитывается и вес каждого параметра - то, в какой степени каждый из параметров влияет на конечный результат.

Пример

Предиктивная аналитикаЧтобы было понятнее, вернемся к той же выручке. У нас есть показатели выручки, среднего чека и количества клиентов за три месяца:

Из этих данных видно, что зависимость выручки от количества клиентов и среднего чека прямая пропорциональная.

Выручка = Количество клиентов * Средний чек.

Зная эту формулу, Вы сможете прогнозировать выручку и влиять на нее, сосредотачивая усилия на росте предикторов. Ну или же понять, сколько Вам необходимо привлечь клиентов и при каком среднем чеке, чтобы получить желаемую выручку.

Это выглядит просто, когда Вы знаете зависимость. Но даже если в этом уравнении разложить, из чего складывается количество клиентов, и какой параметр в какой степени влияет на этот показатель, то получится большая и достаточно сложная цепочка.

1.2. Классификация

Этот метод связан с причислением объекта к какому-либо классу по определенным параметрам. Его задача определить, к какому именно.

Предиктивная аналитикаРаботает это так: в базу данных загружаются все известные переменные объектов, например, по каждому человеку загружают пол, возраст, профессию и уровень дохода. Далее алгоритм вычисляет зависимость одного от другого и предсказывает неизвестный параметр объекта по известным. Обычно в бизнесе этот метод применяется для различных сегментаций.

Пример

Вы занимаетесь оптовой торговлей одежды, и размер скидок зависит от объема закупок товара. Первый способ определить уровень скидки новому клиенту - поработать с ним определенное время.

Если же Вы используете классификационный метод, то имея инфу о прошлых клиентах, например, о местоположении, об ассортименте, Вы можете рассчитать влияние параметров на объем закупок Вашей продукции.

Вывод: зная это, Вы сможете предугадать, какой объем закупок следует ожидать от нового клиента. Ну и не стоит забывать, что чем больше у Вас данных, тем более точными будут прогнозы.

2. Неконтролируемое обучение

В этом типе предиктивное моделирование происходит только по входящим данным без привязки к ответу. Ответ подбирается автоматически в процессе обучения. Это требуется для поиска и анализа скрытых закономерностей внутри сведений о которых ранее было неизвестно. Основной метод - кластеризация.

2.1. Кластеризация

Предиктивная аналитикаК этому методу предиктивной аналитики относятся задачи:

  1. Проектирование типологии и классификации;
  2. Анализ эффективных схем группировки данных;
  3. Рождение гипотез на основе исследований;
  4. Проверка гипотез принадлежности одного объекта к проверяемой группе.

Для бизнеса она полезна тем, что на основе кластерного анализа можно более четко представлять взаимосвязи и зависимости. Помимо этого, он помогает выявлять отклонения и новые тенденции.

Пример

Предиктивная аналитикаВозьмем тот же пример, что и в классификационном методе. Только если там нам и нашей модели уже известна зависимость объема закупок от параметров (местоположение, рекламные вложения и ассортимент), то в этом случае мы их не знаем.

Так вот, мы загружаем данные о наших клиентах и алгоритм определяет, есть ли взаимозависимость между ними, и если есть, то какая.

Инструменты предиктивной аналитики

Есть много инструментов и программных продуктов. Они отличаются между собой функциональностью и удобством пользования. Некоторые из них нужны для создания предиктивных моделей, некоторые для их интерпретации, а самые продвинутые - для того и другого.

Предиктивная аналитикаПри выборе инструмента обратите внимание на:

  1. Поддержка полного цикла аналитики. От исследования данных до создания моделей и оценки их эффективности;
  2. Интеграция знаний. Знания, полученные в процессе аналитики, должны интегрироваться в другие сферы бизнеса;
  3. Поддержка интеграции. Она необходима с различными источниками получения и обработки данных;
  4. Удобство пользования. Программа должна быть понятна для разных типов пользователей: от статистиков до менеджеров;
  5. Адаптивность к работе. Работоспособность с минимальным вмешательством программистов и технических специалистов.

Так вот, в результате функционирования таких систем, управляющие специалисты могут своевременно формировать гипотезы и проверять их, принимать точные и обоснованные решения.

Коротко о главном

Благодаря предиктивной аналитике Вы сможете принимать более взвешенные решения, подготовитесь к непредвиденным ситуациям и повысите эффективность Вашего бизнеса в целом.

Предиктивная аналитикаНо это не фундамент для бизнеса, а инструмент, повышающий эффективность предприятия. Поэтому бОльшую пользу он принесет уже устоявшейся компании, у которой налажены основные бизнес-процессы и сбор данных.

ПА сложный и ресурсоемкий процесс, требующий высокой квалификации как в статистике, так и в работе с информацией.

История появления

История данного метода берет свое начало с 40-х годов прошлого столетия, когда команда под руководством Алана Тьюринга пытались взломать шифровальную машину Фашистской Германии “Энигма”.

Сложность данной операции заключалась в том, что алгоритм Энигмы менялся каждые 24 часа, и его не успевали взламывать

Предиктивная аналитикаАлан Тьюринг, британский математик, изобретатель вычислительной “Машины Тьюринга” предположил, что в любом случае есть какая-либо корреляция между символами, осталось лишь ее вычислить. Но для этого требовалось хоть что-то, что есть в каждом зашифрованном сообщении.

Немцев подвела их идеология - в каждом их сообщении была ритуальная для них фраза “Да здравствует Гитлер”.

Вычислив алгоритм составления этой фразы, а именно, соответствие зашифрованных символов символам из реальной фразы, команде тьюринга удалось разгадать “Код Энигмы”. Кстати, считается, что как раз это и позволило значительно сократить Вторую мировую войну.

P.S. На эту тему снят потрясающий, на наш взгляд, фильм “Игра в имитацию” 2014 года.

Ну и после этот метод предиктивной аналитики начал успешно применяться и в других вычислительных задачах, что позволило родиться тому, на основе чего мы написали эту статью.


0 комментарии
Что вы могли пропустить